Polyhedral Geometry

Authors: Taylor Brysiewicz and Michael Joswig

The preprint of this chapter is available here.

julia> points = [1 0; 1 1; 0 1; -1 0; -1 -1];

julia> P = convex_hull(points)
Polyhedron in ambient dimension 2

julia> facets(P)
5-element SubObjectIterator{AffineHalfspace{QQFieldElem}} over the halfspaces of R^2 described by:
-x_1 <= 1
-x_1 + x_2 <= 1
x_1 - 2*x_2 <= 1
x_1 <= 1
x_2 <= 1


julia> f_vector(P)
2-element Vector{ZZRingElem}:
 5
 5

julia> volume(P)
5//2

julia> lattice_points(P)
6-element SubObjectIterator{PointVector{ZZRingElem}}:
 [-1, -1]
 [-1, 0]
 [0, 0]
 [0, 1]
 [1, 0]
 [1, 1]
julia> P = polyhedron([1 5; 2 -1; -1 0; 0 -1], [20,10,0,0])
Polyhedron in ambient dimension 2

julia> LP = linear_program(P, [1,1], convention=:max)
Linear program
   max{c*x + k | x in P}
where P is a Polyhedron{QQFieldElem} and
   c=QQFieldElem[1, 1]
   k=0

julia> optimal_value(LP)
100//11

julia> optimal_vertex(LP)
2-element PointVector{QQFieldElem}:
 70//11
 30//11
julia> T = tetrahedron()
Polytope in ambient dimension 3

julia> vertices(T)
4-element SubObjectIterator{PointVector{QQFieldElem}}:
 [1, -1, -1]
 [-1, 1, -1]
 [-1, -1, 1]
 [1, 1, 1]
julia> [ f_vector(P) for P in [T, cube(3), cross_polytope(3),
                               dodecahedron(), icosahedron()] ]
5-element Vector{Vector{ZZRingElem}}:
 [4, 6, 4]
 [8, 12, 6]
 [6, 12, 8]
 [20, 30, 12]
 [12, 30, 20]
julia> D = dodecahedron()
Polytope in ambient dimension 3 with EmbeddedAbsSimpleNumFieldElem type coefficients

julia> vertices(D)[1]
3-element PointVector{EmbeddedAbsSimpleNumFieldElem}:
 1//2 (0.50)
 1//4*sqrt(5) + 3//4 (1.31)
 0 (0.00)
orbit_counts = MSet{Int}();

for k in 1:92
  J = johnson_solid(k)
  Aut = automorphism_group(J)[:on_vertices]
  push!(orbit_counts, length(orbits(Aut)))
end
julia> sort(collect(orbit_counts.dict))
14-element Vector{Pair{Int64, Int64}}:
  2 => 26
  3 => 24
  4 => 17
  5 => 8
  7 => 5
  8 => 2
  9 => 2
 12 => 1
 14 => 1
 15 => 1
 17 => 1
 20 => 1
 27 => 1
 29 => 2
julia> P3 = orbit_polytope([1,2,3,4], symmetric_group(4))
Polyhedron in ambient dimension 4

julia> dim(P3)
3

julia> describe(combinatorial_symmetries(P3))
"C2 x S4"
julia> Q = convex_hull([0 0 0], [0 1 0; 0 0 1], [1 0 0])
Polyhedron in ambient dimension 3

julia> vertices(Q)
0-element SubObjectIterator{PointVector{QQFieldElem}}

julia> minimal_faces(Q)
(base_points = PointVector{QQFieldElem}[[0, 0, 0]], lineality_basis = RayVector{QQFieldElem}[[1, 0, 0]])
julia> Rays = [1 0; 1 1; 0 1; -1 0; 0 -1];

julia> Cones = IncidenceMatrix([[1,2], [2,3], [3,4], [4,5], [5,1]]);

julia> PF = polyhedral_fan(Cones, Rays)
Polyhedral fan in ambient dimension 2
julia> P = rand_spherical_polytope(6,30)
Polytope in ambient dimension 6

julia> show(f_vector(P))
ZZRingElem[30, 336, 1468, 2874, 2568, 856]
julia> show(h_vector(P))
ZZRingElem[1, 24, 201, 404, 201, 24, 1]
julia> show(g_vector(P))
ZZRingElem[1, 23, 177, 203]
n_vertices = 30;
n_samples = 100;
g_vectors = Array{Int32}(undef,n_samples,2);

for i=1:n_samples
    RS = rand_spherical_polytope(6,n_vertices)
    g = g_vector(RS)
    g_vectors[i,1] = g[3] # notice index shift as Julia counts from 1
    g_vectors[i,2] = g[4]
end

using Plots
scatter(g_vectors[:,1], g_vectors[:,2],
        xlabel="g_2", ylabel="g_3", legend=false);

julia> min_g2 = minimum(g_vectors[:,1])
159

julia> max_g2 = maximum(g_vectors[:,1])
192

julia> show(upper_bound_g_vector(6,30))
[1, 23, 276, 2300]
julia> ub = [ Int(Polymake.polytope.pseudopower(g2,2)) for g2 in min_g2:max_g2 ]
34-element Vector{Int64}:
  990
  997
 1005
 1014
 1024
 1035
 1047
 1060
 1074
 1089
 1105
 1122
 1140
 1141
 1143
 1146
 1150
 1155
 1161
 1168
 1176
 1185
 1195
 1206
 1218
 1231
 1245
 1260
 1276
 1293
 1311
 1330
 1331
 1333
julia> lambda = Partition([3,1,1])
[3, 1, 1]

julia> GT = gelfand_tsetlin_polytope(lambda)
Polyhedron in ambient dimension 6

julia> lattice_points(GT)
6-element SubObjectIterator{PointVector{ZZRingElem}}:
 [3, 1, 1, 1, 1, 1]
 [3, 1, 1, 2, 1, 1]
 [3, 1, 1, 2, 1, 2]
 [3, 1, 1, 3, 1, 1]
 [3, 1, 1, 3, 1, 2]
 [3, 1, 1, 3, 1, 3]

julia> ehrhart_polynomial(GT)
2*x^2 + 3*x + 1

julia> volume(project_full(GT))
2
julia> w0 = @perm (1,3,2)
(1,3,2)

julia> genGT = gelfand_tsetlin_polytope(lambda,w0)
Polyhedron in ambient dimension 6

julia> lattice_points(genGT)
3-element SubObjectIterator{PointVector{ZZRingElem}}:
 [3, 1, 1, 3, 1, 1]
 [3, 1, 1, 3, 1, 2]
 [3, 1, 1, 3, 1, 3]
julia> dc = demazure_character(lambda,w0)
x1^3*x2*x3 + x1^2*x2^2*x3 + x1*x2^3*x3

julia> dc(1,1,1)
3
julia> C = cube(3, 0, 1);

julia> R, x, c = polynomial_ring(QQ, :x=>1:3, :c=>(0:1,0:1,0:1));

julia> f = sum(prod(x[i]^Int(p[i]) for i=1:3)
               * c[(Vector{Int}(p)+[1,1,1])...] for p=lattice_points(C))
x[1]*x[2]*x[3]*c[1, 1, 1] + x[1]*x[2]*c[1, 1, 0] + x[1]*x[3]*c[1, 0, 1] + x[1]*c[1, 0, 0] + x[2]*x[3]*c[0, 1, 1] + x[2]*c[0, 1, 0] + x[3]*c[0, 0, 1] + c[0, 0, 0]

julia> I = ideal(R, vcat([derivative(f,t) for t = x], [f]));

julia> D222 = eliminate(I,x)[1]
c[0, 0, 0]^2*c[1, 1, 1]^2 - 2*c[0, 0, 0]*c[1, 0, 0]*c[0, 1, 1]*c[1, 1, 1] - 2*c[0, 0, 0]*c[0, 1, 0]*c[1, 0, 1]*c[1, 1, 1] - 2*c[0, 0, 0]*c[1, 1, 0]*c[0, 0, 1]*c[1, 1, 1] + 4*c[0, 0, 0]*c[1, 1, 0]*c[1, 0, 1]*c[0, 1, 1] + c[1, 0, 0]^2*c[0, 1, 1]^2 + 4*c[1, 0, 0]*c[0, 1, 0]*c[0, 0, 1]*c[1, 1, 1] - 2*c[1, 0, 0]*c[0, 1, 0]*c[1, 0, 1]*c[0, 1, 1] - 2*c[1, 0, 0]*c[1, 1, 0]*c[0, 0, 1]*c[0, 1, 1] + c[0, 1, 0]^2*c[1, 0, 1]^2 - 2*c[0, 1, 0]*c[1, 1, 0]*c[0, 0, 1]*c[1, 0, 1] + c[1, 1, 0]^2*c[0, 0, 1]^2
julia> CubeFacets = [lattice_points(F) for F in faces(C,2)];

julia> VariableIndices = [[c+[1,1,1] for c=Vector{Vector{Int}}(F)] 
                           for F=CubeFacets];

julia> FacialDeterminants = [c[v[1]...]*c[v[4]...]-c[v[2]...]*c[v[3]...] 
                             for v=VariableIndices]
6-element Vector{QQMPolyRingElem}:
 c[0, 0, 0]*c[0, 1, 1] - c[0, 1, 0]*c[0, 0, 1]
 c[1, 0, 0]*c[1, 1, 1] - c[1, 1, 0]*c[1, 0, 1]
 c[0, 0, 0]*c[1, 0, 1] - c[1, 0, 0]*c[0, 0, 1]
 c[0, 1, 0]*c[1, 1, 1] - c[1, 1, 0]*c[0, 1, 1]
 c[0, 0, 0]*c[1, 1, 0] - c[1, 0, 0]*c[0, 1, 0]
 c[0, 0, 1]*c[1, 1, 1] - c[1, 0, 1]*c[0, 1, 1]

julia> E222 = D222*prod(FacialDeterminants);

julia> NP = newton_polytope(E222);

julia> dim(NP)
4

julia> show(f_vector(NP))
ZZRingElem[74, 152, 100, 22]
julia> C = cube(3,0,1)
Polytope in ambient dimension 3

julia> SP = secondary_polytope(C)
Polytope in ambient dimension 8

julia> V = point_matrix(vertices(NP))[:, 4:11].+1;

julia> SP == convex_hull(V)
true

julia> AllTriangulations = all_triangulations(C);

julia> Tri_as_SOP = [subdivision_of_points(C,T)
                     for T in AllTriangulations];

julia> GKZ_Vectors = [gkz_vector(T) for T in Tri_as_SOP];

julia> SP_from_GKZ = convex_hull(GKZ_Vectors)
Polyhedron in ambient dimension 8

julia> SP_from_GKZ == SP
true

julia> T = AllTriangulations[1]
6-element Vector{Vector{Int64}}:
 [1, 2, 3, 5]
 [2, 3, 4, 5]
 [2, 4, 5, 6]
 [3, 4, 5, 7]
 [4, 5, 6, 7]
 [4, 6, 7, 8]

julia> S = subdivision_of_points(C,T)
Subdivision of points in ambient dimension 3

julia> is_regular(S)
true

julia> show(min_weights(S))
[3, 1, 1, 0, 0, 0, 0, 1]
julia> IM = IncidenceMatrix(T);

julia> V = matrix(QQ, vertices(C));

julia> PC = polyhedral_complex(IM,V);

julia> visualize(PC)
julia> G = automorphism_group(C)[:on_vertices]
Permutation group of degree 8

julia> OrbitRepresentatives=
        unique([minimum(gset(G,permuted,[v])) 
          for v in GKZ_Vectors])
6-element Vector{Vector{QQFieldElem}}:
 [1, 3, 3, 5, 5, 3, 3, 1]
 [1, 3, 3, 5, 6, 2, 2, 2]
 [1, 3, 4, 4, 6, 2, 1, 3]
 [1, 4, 4, 3, 6, 1, 1, 4]
 [1, 5, 5, 1, 5, 1, 1, 5]
 [2, 2, 2, 6, 6, 2, 2, 2]

julia> OrbitSizes = 
        [length(
          filter(x->minimum(gset(G,permuted,[x]))==u,
          GKZ_Vectors)) for u in OrbitRepresentatives];

julia> show(OrbitSizes)
[12, 24, 24, 8, 2, 4]
julia> P = rand_spherical_polytope(6, 500; seed=11)
Polytope in ambient dimension 6

julia> Polymake.prefer("ppl") do
         @time n_facets(P)
       end
205.427732 seconds (7.13 G allocations: 321.966 GiB, 0.68% gc time)
58163

julia> P = rand_spherical_polytope(6, 500; seed=11);

julia> Polymake.prefer("beneath_beyond") do
         @time n_facets(P)
       end
 61.090983 seconds (335.63 M allocations: 5.309 GiB, 0.08% gc time)
58163

julia> P = rand_spherical_polytope(6, 500; seed=11);

julia> Polymake.prefer("libnormaliz") do
         @time n_facets(P)
       end
 11.167154 seconds (19.12 M allocations: 811.301 MiB, 0.07% gc time)
58163
Edit this page Contact Imprint Privacy policy © 2018-2025 The OSCAR Team